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Deposition is modeled as a first order reaction on the Darcy scale for porous media which are statistically
homogeneous. An elementary analytical solution is derived. A parametric study was done with a three-
dimensional code which is briefly described and checked in media where the solution is known. The role of the
parameters, including the artificial ones, is discussed with an illustrative example. When the Damköhler
number is small, deposition causes smooth changes to the porosity field; the evolution of porosity is well
described by the analytical solution. Very different results are obtained for large Damköhler numbers. The
influence of the correlation of the initial porosity field is studied.
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I. INTRODUCTION

Deposition in porous media is a process of high practical
and fundamental interest, since this problem arises in various
branches of industry, particularly in chemical, civil, and pe-
troleum engineering. For instance, the deposition at the solid
surface of a reservoir may considerably diminish the oil pro-
duction. Other standard applications include water treatment
and environmental studies of transport of chemical contami-
nants. A recent application is the reduction of the release rate
of carbon dioxide to the atmosphere by mineral trapping in
deep permeable geologic formationssXu et al. f1gd.

The topic of changes in hydrologic properties due to
chemical reactions has recently been reviewed by Saripalliet
al. f2g. Most of the understanding of the reactive transport
has been obtained on the pore scale. On this scale, the term
deposition can be used in different meanings, referring either
to the solute precipitation on the fluid-solid interface, to the
trapping of fine particles at pore throats, or to ion exchange,
etc. These processes cause morphological changes of the
pore space and can lead to porosity and permeability de-
creases.

Sahimi et al. f3g reviewed models of fluid-solid interac-
tions in porous media. Shapiro and Brennerf4g studied dis-
persion of a chemically reactive solute in spatially periodic
porous media; however, the geometry of the medium was
assumed to be fixed. The precipitation of a reactive solute at
the fluid-solid interface in porous media and the subsequent
morphological changes of the pore space were discussed by
Sallèset al. f5g. Matthewset al. f6g simulated the subtle
changes in void space dimensions which occur during the
artificial deposition of small amounts of illite and kaolinite
within sandstones. They compared the mercury intrusion
curves of an untreated plug of sandstone and of a similar
plug in which the deposit has been precipitated.

Deposition in fracture networks is not often addressed in
the literature. Mourzenkoet al. f7g and Békriet al. f8g stud-
ied deposition in a single fracture. They considered deter-
ministic and random fractures and the changes in fracture
morphology were taken into account. Deposition in fracture
networks is lacking at the moment and the properties have
not been upscaled yet.

Chang and Civanf9g developed a model which can satis-
factorily simulate the permeability alteration mechanisms

caused by hydrodynamic, physico-chemical and chemical in-
teractions between fluids and reservoir rocks. Xuet al. f1g
developed a reactive fluid flow and geochemical transport
numerical model for evaluating long-term CO2 disposal in
deep geologic formations. This study makes use of an exist-
ing nonisothermal reactive geochemical transport model
TOUGHREACT f10g. It was applied to a one-dimensionals1Dd
radial flow which schematizes flow around a well. No
change in the transport properties was taken into account
though it is possible.

As a rule, the results of the pore scale simulations are
compared to the experimental measurements on the core
samples which are supposed to be homogeneous. Reservoir
simulations are applied to fields extending from several
meters to kilometers. In this case, the geological structure of
the reservoir is taken into account by means of the macro-
scopic parameters which vary in space and time. Liuet al.
f11g describe a two-dimensional geochemical simulator,
CIRF.A, and its application to matrix acidizing analysis and
design. The effects of diagenesis on the properties of sand-
stone reservoirs were addressed by Le Galloet al. f12g. They
developed a three-dimensional, two phase, reaction-transport
simulator namedDIAPHORE which couples kinetically con-
trolled dissolution and precipitation of minerals with equilib-
rium reactions of chemical species in the water phase. In
reservoir simulations, the ability of the core-scale data to
represent the macroscopic properties of discretization blocks
is not obvious since in real rocks the macroscopic parameters
can vary within a block. This variability must be taken into
account and the validity of the permeability-porosity rela-
tionships must be verified.

An appropriate averaging technique requires an investiga-
tion of the deposition phenomenon on the intermediate scale
which corresponds to the discretization block. The major
purpose of this work is to implement this technique numeri-
cally and to study deposition and the subsequent changes of
the macroscopic properties in statistically homogeneous po-
rous media. To describe such media, a discrete model was
used with uniform porous subdomains possessing various
physical properties. Statistically homogeneous materials are
viewed as being spatially periodic, i.e., as composed of iden-
tical heterogeneous cells.
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Section II provides a general overview on the deposition
process of a chemical solute and on subsequent changes of
the macroscopic properties of the porous medium. We con-
sider a three-dimensional transport of the solute in the pres-
ence of a first order irreversible reaction at a fluid/rock sur-
face. The coupling between the changes of macroscopic
parameters and the reactive transport uses a quasisteady hy-
pothesis. In Sec. IV, this assumption is justified and the cor-
responding algorithm is described. The flow and transport
equations are solved numerically by means of a finite volume
technique; porosity changes are governed by a balance equa-
tion. A brief discussion on the code performance is given at
the end of the section.

Section III provides the necessary constitutive equations
derived from previous studies on the local scale such as the
relation between porosity and permeability, the local disper-
sion tensor and the local deposition rate. It gives also the
initial porosity fields whose evolution will be studied. The
numerical algorithm is detailed in Sec. IV. An elementary
solution for the porosity evolution is derived; it will be sys-
tematically compared to the numerical results. The main di-
mensionless quantities are defined in this section.

Section V presents the numerical results. Preliminary
verifications of the code on several configurations are de-
tailed. Then, three realizations of statistically equivalent me-
dia are generated and very close results are obtained for
them. The influence of the unit cell size was studied by com-
paring the results for various ratios of the correlation length
and of the unit cell size. The influence of the discretization
has been studied; it appears that the size of the elementary
cube is small enough that the discretization does not influ-
ence the results. The influence of the Damköhler number is
studied; two regimes are shown to exist for small and high
Damköhler numbers. The main statistical parameters of the
initial porosity field are also briefly addressed. Finally, the
influence of the nature of the initial porosity field is studied.
A few concluding remarks end this paper.

II. GOVERNING EQUATIONS

Let us start by a general presentation of the problem; ini-
tial configurations of the studied porous media are illustrated
in Fig. 1. Consider some chemical solute contained in under-
ground water. While flowing through the porous medium, the
solute precipitates onto the solid surface of the medium.
Fresh solute is supposed to be brought so that the mean
volumetric liquid concentration remains constant all the
time. Moreover, we assume that the macroscopic gradient of
concentration is negligibly small. This may correspond to a
physical situation where the region of interest is located suf-
ficiently far away from injection/production wells. Deposi-
tion implies porosity, permeability and other macroscopic pa-
rameter changes. After a very long time, if fresh solute is
constantly brought by the fluid, the permeability of the me-
dium will tend towards zero.

A. Flow

The seepage velocityv̄ inside the porous domain is gov-
erned by the Darcy equation,

v̄ = −
K

m
· = P, s2.1d

whereK is the permeability tensor,m the fluid viscosity, and
P the pressure.

The pressure field may be obtained by solving the conti-
nuity equation,

= · v̄ = 0. s2.2d

A nonzero macroscopic pressure gradient is imposed along a
given direction over the unit cell,

=P = const. s2.3d

This direction is arbitrarily chosen to be thex-axis. Note that
due to the deposition process, the permeability tensor ins2.1d
depends on time.

B. Convection-dispersion

On the macroscopic scale, the transport of a reactive sol-
ute is governed by a three-dimensional convection-
dispersion equation with reaction

]C«

]t
+ = · sCv̄d = = · sd̄ · = Cd − R, s2.4d

where C is the solute concentration,« the porosity,d̄ the
macroscopic dispersion tensor andR the reaction term. It is
assumed that on the macroscopic scale, dispersion is Fickian
and can be described by a dispersion tensorf13g. Moreover,

d̄ depends on the local porosity and on the fluid velocity as it
will be seen below.

C. Reaction and porosity changes

In the present work, an irreversible first order reaction is
considered. Note that the reaction occurs at the solid-fluid
interface on the pore scale. On the macroscopic scale, the
heterogeneous reaction is expressed by means of a sink term
R f14g which can be modeled as

R= Hg«sC − C * d if C . C * ,

0 if C ø C * ,
J s2.5d

whereC* is the saturation concentration on the solid surface
andg the volumetric reaction rate.g is an unknown function
which depends on deposition on the pore scale. It will be
given later.

Due to deposition, porosity decreases with time as de-
scribed by the balance equation

f
]

]t
s1 − «d = R, s2.6d

where f is the solid fraction in the depositf5g; for instance,
for a random packing of monodisperse spheres,f is equal to
0.64.

It is generally assumed in this paper that the amount of
precipitating solute is unlimited and that the porosity can
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decrease until the porous medium is clogged. This hypoth-
esis will be discussed at the end of Sec. V A 2.

D. Dimensionless formulation

In order to derive the dimensionless parameters which
control the problem, the governing equations should be ex-
pressed in dimensionless form. Let us define the dimension-
less variables

r 8 =
r

L
, d̄8 =

d̄

g0L
2, t8 = g0t, C8 =

C − C*

C0 − C*
,

v8 =
v

V*
, g8 =

g

g0
, f8 =

f

C0 − C*
, ¹8 = L ¹ ,

s2.7d

where L , V* are some characteristic values of length and
velocity; it seems natural thatL is chosen to be the field
scale. Accordingly,g0 is a characteristic value of the reactiv-

ity g; note that it has the dimension of the inverse of a time.
The average liquid concentrationC0 is kept constant with
time and it may be expressed as

C0 =

E
V

C«d3r

E
V

«d3r

, s2.8d

whereV is the whole domain volume.
Let us define the Damköhler number by the standard re-

lation

Da =
g0L

V*
. s2.9d

With the help ofs2.7d and s2.9d, s2.4d can be written as

FIG. 1. Examples of initial porous media. Porosity is given by the grey scalessee the vertical barsd. Examples are forsad a lognormal
porosity field with a Gaussian correlation functionswhich is studied at length in Sec. V Ad; sbd a uniformly distributed porosity field;scd a
Gaussian porosity field;sdd a self-affine porosity field. For the three casessbd, scd, andsdd, k«0l=0.2, s0=0.2, andl /Lc=8/30.
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]«C8

]t8
+

1

Da
=8 · sC8v8d − =8 · sd8 · =8C8d = − g8«C8.

s2.10d

The Damköhler number compares the reaction rate to con-
vection. Alternate choices are of course possible for the units
and the dimensionless numbers.

III. THE CONSTITUTIVE EQUATIONS AND THE
POROSITY FIELD

A. The constitutive equations

Constitutive parameters such as the permeabilityK and

the macroscopic dispersion tensord̄ depend on the pore ge-
ometry of the medium. Their determination is a local scale
problem which involves the analysis of the microstructure of
the porous medium. In this study, a simple model is used for
K ,

K = K0I«h, s3.1d

whereK0 is a characteristic permeability andI the unit ten-
sor. The exponenth is generally taken equal to 4f15–17g.

The dispersion tensor can be approximated as a sum of

the macroscopic diffusion tensord̄0 and of the tensord̂*
which depends on the local Péclet number,

d̄ = d̄0 + «Dmd̂ * , s3.2d

whereDm is the molecular fluid diffusion. The macroscopic
diffusion coefficient will be written as

d̄0 = DmI«2, s3.3d

which corresponds to the relation obtained by Coelhoet al.
f17g for random packings of spheres in agreement with Ar-
chie’s law with a cementation exponent equal to 2. In a co-
ordinate system where thex-axis is parallel to the Darcy

velocity v̄, the tensord̂* has a diagonal form

d̂ * = 1di 0 0

0 d' 0

0 0 d'

2 , s3.4d

when the porous medium is locally isotropic;di is the longi-
tudinal dispersion andd' the transversal dispersion. They
can be estimated as power functions of the local Péclet num-
ber Peloc,

di = biPeloc
ai , d' = b'Peloc

a'. s3.5d

The local Péclet number is defined as

Peloc =
V * l

Dm
, s3.6d

where l is some local characteristic length.l can be chosen
equal to the correlation length of the pore space. In this
work, l is taken equal to 0.5 mm. The molecular diffusionDm
of a reactive solute in water phase is of the order of 10−9 m.

The approximation of the results obtained by Coelhoet al.
f17g for random packings of spheres yields the following

quantities. For PelocP f0.1,1g, the values of the coefficients
are of the order of

bi = 0.175, ai = 0.305, b' = 0.127, a' = 0.159.

s3.7ad

For PelocP f1,105g, they are of the order of

bi = 0.175, ai = 1.285, b' = 0.127, a' = 0.80.

s3.7bd

Sinces3.4d is valid in a local coordinate system, one must
make coordinate changes depending on the velocity orienta-
tions at each point where the dispersion tensor is needed.

The last quantity of interest is the volumetric reaction rate
g scf. Sec. II Cd. It can be estimated in a very crude way
from the knowledge of the surface reaction rate constantkp
which does not depend on the morphology of the pore space.
This can be done as follows. The hydraulic radiusm is usu-
ally defined as the ratio of the fluid volumeVf to the pore
surface areaSp,

m=
Vf

Sp
. s3.8d

Vf andSp are relative to a total volumeV. The reaction term
R is proportional to the pore surface area per unit volume

R= kp
Sp

V
sC − C * d = g«sC − C * d. s3.9d

Hence, the effective volumetric reaction rate constant is

g =
kp

m
. s3.10d

The hydraulic radiusm decreases during the deposition
process. It is difficult to predict the evolution of this param-
eter. There are several useful relations described in the litera-
ture for the hydraulic radius. Usually,m depends on the mi-
croscopic geometry of the medium. We suppose that locally
the deposition process is limited by the surface reaction ki-
netics. In that case, a uniform deposition is expectedf7g.
Since the medium is supposed to be granular, the grains are
coated by a uniform layer of deposited matter. For random
packings of monodisperse spheres,m can be expressed as

mstd = mc«std3/4, s3.11d

wheremc is some constant. This relation roughly describes
the hydraulic radius variations for random packings of
monodisperse spheres when the initial porosity is about 0.4.
It was shown that the specific surface area of consolidated
media is only slightly affected by a slow deposition process
f7,12g. For small porosities, the hydraulic radius is taken to
be constant. Note that the relations presented above are only
meant to provide reasonable orders of magnitude.

Since, on the pore scale, the deposition process is as-
sumed to be reaction-limited, it is useful to provide an ex-
pression for the relationship between the Damköhler num-
bers Dap and Da on the pore scale and on the field scale,
respectively. Dap is expressed as

E. A. BORISOVA AND P. M. ADLER PHYSICAL REVIEW E71, 016311s2005d

016311-4



Dap =
kp

vp
, s3.12d

wherevp is the local interstitial velocity. Thus, Dap and Da
are related by

Da =
L

km0l
vp

V*
Dap. s3.13d

Since on the local scale deposition is assumed to be reaction-
limited, one has

Dap ! 1. s3.14d

Hence,s3.13d shows that because of the length scale ratio,
Da can be very large while Dap is very small.

B. Description of the initial porosity field

The porosity field is generated numerically as a random
correlated or noncorrelated field. Usually, local properties of
the real porous media are described by lognormal distribu-
tions f20g. In this paper, uniform and Gaussian distributions
were also used.

The uniform distribution corresponds to porosity values
uniformly distributed on some interval, for example, between
0 and 0.4.

The probability density of the Gaussian distribution is ex-
pressed as

fsxd =
1

Î2psG
2

expS−
1

2

sx − mGd2

sG
2 D , s3.15d

wheremG is the mean andsG
2 the variance.

Another class of random distributions is the lognormal
distribution. If yG is a Gaussian random variable with mean
mG and variancesG

2 , the variableyLN=expsyGd is lognor-
mally distributed. Its mean and variance are given by

mLN = expsmG + 1
2sG

2 d, sLN
2 = exps2mG + 2sG

2 d − mLN
2 .

s3.16d

The spatial organization of the porosity field also needs to
be defined. Two major types of structures can be easily
implemented by means of the correlation function

Csud =
kf«sx + ud − m«gf«sxd − m«gl

ks«sxd − m«d2l
, s3.17d

wherem«=k«l.
The porosity field is said to be Gaussian when its corre-

lation C is Gaussian,

Csud = sG
2 expF− Sux

lx
D2

− Suy

ly
D2

− Suz

lz
D2G , s3.18d

wherelx, ly, lz are the correlation lengths along thex, y,
andz directions, respectively.u is the shift with components

sux,uy,uzd. Let us denote byĈskd the Fourier transform of
the correlation functionCsud. Self-affine porosity fields are
defined by

Ĉskd ~ f1 + slxkxd2 + slykyd2 + slzkzd2g−H/2, s3.19d

whereH is the Hurst exponent. The Gaussian correlated field
is generated by means of the Fourier transform method
which is described by Adler and Thovertf18g.

The fields generated by these two correlations are very
different and will be illustrated in Sec. V.

IV. PRELIMINARIES TO THE NUMERICAL STUDY

A. Numerical solution

The problem is solved in a parallelepipedic cell dis-
cretized intoNcx3Ncy3Ncz elementary cubes. Each elemen-
tary cube has given porosity, diffusion, and permeability ten-
sors. The continuity equation, the reactive transport equation,
and the equation for porosity changes were discretized using
a finite volume method. The pressure and concentrations are
evaluated at the cube corners. The pressure field was ob-
tained by using a box integration technique.

To solve the transport equations, one is usually interested
in a shock-capturing numerical model, which does not pro-
duce spurious oscillations near discontinuities and yet re-
mains stable. These properties are quite important for simu-
lating convection-dispersion phenomena, especially for
situations where convection is dominant. Therefore, our
main effort was to reduce numerical dispersion. One possible
way to achieve it is to apply an operator-splitting technique.
The idea is to solve the convection part up to a certain time
stepdt and then to add the dispersive effects in a separate
step. The second order flux limiting scheme was applied to
solve the convection equationf19g. For this method, the best
accuracy is obtained when the time step is chosen as large as
the stability criterion for the convective part allows. Operator
splitting has the advantage that the time step for the convec-
tion part may be optimized to reduce numerical dispersion.
Then, the dispersive part may be solved implicitly or exlic-
itly. Here, the dispersion-reaction part was addressed by a
classical explicit scheme. When the convective shift fordt is
calculated, the dispersion equation is solvedn times for time
stepdts=dt /n. Usually, convective transport is predominant
in underground formations. Thus, the restrictions on the con-
vection time step are more severe than that for dispersion and
n=1.

The code was tested on several cases where the analytical
solution is available. A special attention was put on checking
the extreme situations, such as pure convection, convection-
dispersion, diffusion-reaction, and convection-reaction. Usu-
ally, a good agreement between numerical results and ana-
lytical predictions is observed.

In Sec. II, the governing equations are introduced into the
framework of a continuous description. To solve these equa-
tions numerically, a quasisteady hypothesis is assumed. The
idea is the following. As long as the porosity changes are not
significant, i.e., they do not exceed a valueD«max prescribed
in advance, we suppose that the macroscopic parameters and
local velocities do not change. Thus, the conservation equa-
tion for pressure is solved with constant parameters, i.e., for
a fixed situation. Then, asymptotically the concentration field
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is expected to decay exponentially with time, but uniformly
in spacef4g. This corresponds to

C8sr 8,t8d = Ĉ8sr 8dexps− Bt8d, s4.1d

whereB is some decay rate.
Hence, when this exponential regime takes place, the fol-

lowing ratio over a constant time stepdt8 becomes constant:

E
V

C8sr 8,t8dd3r 8

E
V

C8sr 8,t8 − dt8dd3r 8

= expsBdt8d. s4.2d

Thus, denote

ast8d = ln1 E
V

C8sr 8,t8dd3r 8

E
V

C8sr 8,t8 − dt8dd3r 82 . s4.3d

The convergence test consists in checking the absolute value
of the time derivative ofast8d. We assume that the time
necessary to reach such a regime is very small compared to
the deposition time. Hence, the transport equations are iter-
ated until the concentration field reaches the exponential re-
gime.

Then, the porosity changes can be easily obtained as func-
tions of time by solving Eq.s2.6d. Thus, it is possible to
calculate the timet during which the maximal porosity
changeD«i exceeds the prescribed thresholdD«max in any
elementary cubei,

t = hdt8:«ist08d − «ist08 + dt8d < D«maxj. s4.4d

The new values of the porosity field and of the other
macroscopic parameters are calculated according to the
amount of matter deposited duringt in each elementary
cube. Then, the calculations are iterated with these new pa-
rameters.

The program is stopped when the macroscopic permeabil-
ity of the porous medium is 103 times smaller than the initial
one. Some additional comments on this point can be found at
the end of Sec. V A 2. A schematic representation of the
algorithm is given in Fig. 2.

Several assumptions used in this problem need to be con-
firmed by quantitative comparisons with experimental data,
but to the best of our knowledge, no experimental work is
available on this subject. Such a verification is especially
necessary when the deposition rate is large, with rapid
changes of the geometry of the pore space; in such a case,
the concentration profile may never reach the exponential
regime.

B. An elementary solution

An elementary solution can be derived froms2.6d when
the concentrationC8 and the reactivityg8 are assumed to be
constant. Obviously,

]

]t8
s1 − «d =

g8

f8
«C8. s4.5d

Moreover, this relation can be averaged over the cell and it
yields an exponential decay for the average porosityk«l,

k«l = k«0lexpS− t8
g8

f8
C8D . s4.6d

This elementary solution will prove to be very useful.

C. Characteristic quantities, output quantities, and
dimensionless parameters

The choice of the characteristic parameters is very impor-
tant since they define the dimensionless parameters control-
ling the process. The characteristic lengthL is chosen equal
to the correlation lengthl of the porosity field. The charac-
teristic volumetric reactivity constant is chosen to be equal to

g0 =
kp

km0l
, s4.7d

wherekm0l is the average hydraulic radius at the initial time.
Let us now give the major output quantities. At the field

scale, one is usually interested in the macroscopic properties
of the medium. Several macroscopic quantities were system-
atically measured. The first one is the average macroscopic
porosity k«l,

FIG. 2. Schematic representation of the algorithm.
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k«lt8

k«0l
=

E
V8

«st8dd3r 8

E
V8

«st08dd
3r 8

, s4.8d

whereV8 is the unit cell. The macroscopic permeability is
determined by means of the Darcy law

Kt

K0
~

Vt8
8

Vt08
8

, s4.9d

where Vt8
8 is the macroscopic seepage velocity at timet8.

During the simulations, the macroscopic pressure gradient
¹P is kept constant.

The total amount of deposit per unit volume as a function
of time t8 is given by

Qdepst8d =E
t08

t8 1

V8
E

V8
g8«C8d3r 8dt8. s4.10d

Two autocorrelation functions will be used to characterize
the evolution of the porosity field.Risud is calculated along

the main pressure gradient andR'svd is calculated perpen-
dicular to the main pressure gradient

Risud =
kf«sx + ud − m«gf«sxd − m«gl

kf«sxd − m«g2l
, s4.11ad

R'svd =
kf«sx + vd − m«gf«sxd − m«gl

kf«sxd − m«g2l
, s4.11bd

whereu andv are spatial shifts parallel and perpendicular to
=P, respectively.

It is obviously shown by the previous developments that
the dimensionless parameters are numerous, namely, the ar-
tificial parameters which are only useful in the course of the
numerical calculations, but which do not possess any physi-
cal meaning such as the size of the unit cellNc and the
porosity stepD«max, the basic physical parameter Da, the
parameters which characterize the initial porosity distribu-
tion.

V. RESULTS AND DISCUSSION

In this work, the evolution of the macroscopic parameters
with time is taken into account by means of a quasisteady

FIG. 3. Porosity of a bilayered porous medium for cases A and
B. Flow is parallel to thex-axis. The white and grey zones corre-
spond to«1

0=0.2 and«2
0=0.4, respectively.

FIG. 4. Numerical results in a bilayered medium for cases A and
B denoted bys andp, respectively. Flow is parallel to thex-axis.
The solid lines represent the analytical solutions.
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FIG. 5. Evolution of a porous medium with an initial lognormal porosity distribution. Each line corresponds to a different time. The left
row is the probability densitygsln «d of lns«sr 8 ,t8dd; the central one is a cross section of the porosity field parallel to the pressure gradient;
the right one is perpendicular to the pressure gradient. Da=8310−6. The porosity convention is given by the vertical bars.
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approximation. A test presented in the following section is
designed to study the influence of the discontinuities intro-
duced into the code due to the steady state approach. Other
verifications are done in order to study the effects of the
discretization of the porous medium and of the statistical
fluctuations on the output results.

A. Preliminaries

1. Simple deterministic media

Consider a two-dimensional porous medium which con-
sists of two homogeneous layers with initial porosities«1

0

=0.2 and«2
0=0.4. We suppose that the macroscopic pressure

gradient is imposed along thex direction and is kept constant
with time. The layers can be either parallel or perpendicular
to thex-axis. These two situations will be referred to as cases
A fFig. 3sadg and B fFig. 3sbdg, respectively. For both cases,
the evolution of the macroscopic parameters can be predicted
analytically. In such systems, the liquid concentrationC8 is
expected to be uniform in space. Thus, it is equal to its av-
erage valueC8=1 which is kept constant with time. Then,

«i = S−
3

4

km0l
f8

t8 + s«i
0d3/4D4/3

, i = 1,2, s5.1ad

k«Al = k«Bl = 0.5s«1 + «2d, s5.1bd

where«i is the porosity of theith layer. The calculated mean
porosity values are compared with the analytical solutions in
Fig. 4sad. For both cases, the numerical results match the
analytical curves very satisfactorily. Small differences are
only observed at large times when porosity is low. Note that
in the calculations, the hydraulic radius was assumed to be
constant for low porosity values; this simplification explains
the small differences between numerical and analytical re-
sults in this case.

For case A, the macroscopic permeabilityKA is the sum of
the permeabilities of the layersKA=K1+K2. For case B, the
macroscopic permeabilityKB=sK1

−1+K2
−1d−1. Remind that the

permeability of each layerKi is given bys3.1d. Numerically,
the macroscopic permeability is obtained by means of the
Darcy equation. The calculated values are compared to the
analytical solution in Fig. 4sbd. The agreement is perfect for
both cases.

2. Illustrative case for random media

Statistically homogeneous media are considered as three-
dimensional spatially periodic media, composed of identical
unit cells of sizeLc=30 m. The cell is discretized intoNc

3

=30330330 elementary cubes. Since the lognormal distri-
bution is the most common for porous mediaf20g, system-
atic calculations have been performed for log-normally dis-
tributed initial porosity fields with a Gaussian correlation
function. The initial porosity is supposed to bek«0l=0.2 with
a standard deviations0=0.2. The correlation lengthl is
equal to 8 m. Because of the finite size of the unit cell, it is
useful to define the ratiol /Lc which compares the correla-
tion length to the size of the cell. In this case,l /Lc=8/30.
This particular porous medium is displayed in Fig. 1sad.

The Damköhler number is chosen to be based on the cor-
relation lengthl scf. Sec. IV Cd. We assumed Da=8310−6.
The presence of 8 in the Damköhler number is not arbitrary.
In fact in numerical simulations, it is more convenient to use
the Damköhler number Danum based on the size of the el-
ementary cubea. Danum is a purely numerical parameter
which is used in the course of the numerical calculations
since its application provides the dimensionless discretiza-
tion stepsDr 8 equal to 1. The corresponding Da is easily
obtained from the relation

Da = Danum
l

a
, s5.2d

which means that Danum=10−6 yields Da=8310−6.
Before running the code, it is necessary to determine an

adequate porosity thresholdD«max for the steady state algo-
rithm described in Sec. IV A. Some numerical tests showed
that as long asD«maxø10−2«0, the various curves collapse
onto a single curve. Hence,D«max was chosen equal to
10−2«0 in the rest of the simulations. The calculations are run
as long as the porous medium is sufficiently permeable. As it
was mentioned before, we suppose that the porous medium
is clogged if its macroscopic permeability is 103 times
smaller than the initial one.

FIG. 6. Evolution of the correlation functionsRisud sad and
R'sud sbd for the illustrative case. The dimensionless lengthu is
normalized by the half-size of the unit cell. Da=8310−6.
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The output quantities include the porosity field and the
macroscopic parameters as functions of time. Some probabil-
ity densities and cross sections of the porosity field for suc-
cessive times are shown in Fig. 5. The left cross section is
taken at the center of the domain parallel to=P and the right
one perpendicular to=P; in Fig. 5, they are denoted by the
subscriptsi and', respectively. This set of three pictures is
plotted for successive times until clogging. These sections
show that porosity changes smoothly. It appears that the re-
gions with low porosity are clogged first. At clogging, re-
gions with large porosity still exist.

The probability densitiesgsln «d are displayed in Fig. 5.
Hence, for the initial lognormally distributed porosity field,
gsln «d is Gaussian. Since lognormally distributed values
vary from zero to infinity, values of porosity larger than 1
were truncated; due to this truncation, some elementary
cubes have a porosity equal to 1 and they correspond to the
vertical bars in Fig. 5. During deposition, the probability
density shape gets flat and shifts to the left.

The evolution of the correlation functions is shown in Fig.
6. Deposition only slightly affects the correlation function of
the porosity field. This uniform reduction of porosity is ex-
pected when the liquid concentration does not vary much. In
this case, it is interesting to compare the obtained macro-
scopic parameters with the elementary solutionscf. Sec.

IV B d derived for the situation where the liquid concentration
and the hydraulic radius are constant. Note that the variations
of the hydraulic radius implemented in the code are small.

The evolution of the mean porosity as a function of time
is shown in Fig. 7sad. Since the curve is linear in a semilog
plot, the mean porosity is an exponential function of time.
The mean square approximation gives

k«l
k«0l

< exps− 1.72 t8d. s5.3d

The calculated mean porosity is quite close to the elementary
solution s4.6d. Another important macroscopic parameter is
the total amount of deposit per unit volumeQdep. Figure 7sbd
gives Qdep as a function of mean porosity. A least-square
approximation yields

Qdep< k«0l − k«l. s5.4d

At each time, the total amount of deposited matter is propor-
tional to the change in mean porosity during the correspond-
ing time interval. The evolution of the macroscopic perme-
ability with time and its relation to the mean porosity is a
question of particular interest and importance. Figures 7scd
and 7sdd show the macroscopic permeability as a function of
time and of the mean porosity, respectively; the variations of

FIG. 7. Macroscopic parameters for various Damköhler numbers for the illustrative case. Data are for Da=8310−6 ssd, 0.8 sxd, 8
310−2 spd, 8 sLd, and 80shd. The solid lines represent least-square fits.
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FIG. 8. Evolution of a porous medium with an initial lognormal porosity distribution. Each line corresponds to a different time. The left
row is the probability densitygsln «d of lns«sr 8 ,t8dd; the central one is a cross section of the porosity field parallel to the pressure gradient;
the right one is perpendicular to the pressure gradient. Da=8. The porosity convention is given by the vertical bars.
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« are close to a power law which can be approximated as

K

K0
< S k«l

k«0l
Dh

, s5.5d

with h=3.55. Note that locally an analogous power-law
permeability-porosity relation was used with an exponent
equal to 4fsee Eq.s3.1dg. The elementary solution is ob-
tained by applying this relation to the macroscopic perme-
ability as a function ofk«l,

Ke

K0
< S k«le

k«0l
D4

, s5.6d

where the indexe denotes the elementary solution. The cal-
culated macroscopic permeability is very close to this el-
ementary solution.

When deposition begins, the porosity decreases according
to the elementary solution which is derived for a constant
liquid concentration. Then, the rate of the porosity reduction
accelerates relatively to the elementary solution.

As mentioned in Sec. II C, the amount of precipitating
solute can be limited. Such a limitation would imply that the
proposed curves are valid for a timet8 smaller than a certain
critical time tc8; for larger times, deposition stops because
there is nothing to deposit anymore. For instance, for Da

=0.8, suppose thatQdep is at most equal to 0.1; Fig. 7sbd
implies that tc8<0.5. Therefore, fort8. tc8 , Qdep is equal
to 0.1.

3. Statistical fluctuations

Since the initial configurations are produced at random,
one should average over many of them in order to obtain
meaningful statistical quantities. However, such an approach
is very expensive in terms of computer time. Instead, we
provide here an analysis of the output results for different
realizations of the initial random porosity field.

In addition to the illustrative case, two groups of calcula-
tions were done for the same set of parameters. The porosity
field is lognormal; the mean porosityk«0l is equal to 0.2, the
standard deviations0 to 0.2 and the ratiol /Lc is equal to
8/30. The calculations were done for Da=8310−6 and Da
=8. The agreement between the realizations is very good for
both regimes, except may be in the period close to clogging.
Therefore, the calculated macroscopic quantities are not sig-
nificantly influenced by the statistical fluctuations. Thus, the
tedious averaging procedure described above seems to be
useless.

TABLE I. General analysis of the data. Values denoted byp correspond to simulations where the clogging condition was not obtained due
to numerical difficulties; thus, the timeTc8 corresponds to the last calculated one.

N Initial distribution Da k«0l s0 l /Lc

k«l

k«0l
<on=0

3 ant8
n

K

K0
<exps k«l

k«0l dh

, h Tc8 QdepsTc8da3 a2 a1 a0

1 Lognormal 8310−6 0.2 0.2 8/30 −0.04 0.66 −1.44 1 3.55 1.02 0.160

2 8310−2

3 0.8 −0.11 0.75 −1.47 1 3.41 1.29 0.167

4 8 −0.86 1.27 −1.29 1 4.18 0.94 0.154

5 80 0.12 −0.47 −0.61 1 4.28 0.81* 0.141*

6 8310−6 0.4 0.2 0.39 0.18 −1.48 1 3.48 0.78 0.338

7 0.2 0.1 0.38 0.19 −1.48 1 3.55 0.78 0.169

8 0.2 0.3 −0.04 0.66 −1.44 1 3.77 1.18 0.146

9 8 0.4 0.2 −0.86 0.99 −1.44 1 4.18 0.70 0.318

10 0.2 0.1 −0.90 0.99 −1.41 1 4.16 0.71 0.160

11 0.2 0.3 −0.86 1.27 −1.30 1 4.00 1.24 0.148

12 Uniform 8310−6 0.2 0.115 0 0.04 0.47 −1.43 1 3.20 0.91 0.178

13 Gaussian 0.2 8/30 0.04 0.33 −1.22 1 3.58 1.02 0.180

14 Self-affine −0.05 0.33 −1.22 1 3.35 1.06 0.186

15 Uniform 8 0.2 0.115 0 −0.01 0.53 −1.43 1 3.35 0.75 0.156

16 Gaussian 0.2 8/30 −0.39 0.69 −1.17 1 4.03 0.95 0.174

17 Self-affine −0.07 0.50 −1.24 1 3.44 0.78 0.151

18 Lognormal 8310−6 0.2 0.2 8/20 −0.02 0.14 −0.37 1.25 3.50 1.02 0.162

19 8/40 −0.05 0.44 −1.28 1.88 3.80 0.95 0.155

20 8 8/20 −0.18 1.55 −4.00 3.63 4.42 0.93 0.156

22 8/40 0.17 −0.17 −1.21 2.21 4.10 0.65* 0.103*
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4. The influence of the size of the unit cell

The sizeLc of the unit cell is one of the artificial param-
eters introduced in the simulations. For correlated media, it is
usually supposed thatLc is large enough so that the unit cell
can contain many “independent” samples of the porous me-
dium. If this condition is not satisfied, the discrete model
fails to represent the random character of a real medium.
Thus, it is likely that an improper choice of the cell size can
cause significant errors in the estimation of the macroscopic
parameters of the random medium. The ratiol /Lc was used
to characterize the cell size. In the illustrative case,l /Lc is
equal to 8/30. Two more calculations were done forl /Lc
equal to 8/20 and 8/40.

For all cases, the mean porosity valuek«l is equal to 0.2
and the standard deviations0=0.2. For all calculations, we
kept the ratiol /a constant and equal to 8 as for the illustra-
tive case. In order to change the ratiol /Lc the size of the
unit cell was varied. The mean porosity value and the total
amount of deposit were shown not to be influenced byl /Lc.
On the contrary, the macroscopic permeability is a bit sensi-
tive to the variations ofl /Lc especially for small Damköhler
numbers. Note that correct results are only obtained for suf-
ficiently large unit cells, but the computational time increases
significantly with the increase of the domain size. The pre-

sented tests have shown that the ratiol /Lc=8/30 would be
an optimal choice.

5. Influence of the discretization

It should be reminded that the porosity field is discretized.
In principle, the size of the elementary cubes should be very
small compared to the correlation lengthl in the practically
important case of correlated media. The test included three
calculations for porous media discretized into 120
3120, 60360, and 30330 elementary cubes. In all three
cases, the porosity field is lognormally distributed withk«l
=0.4, s=0.2, andl /Lc=8/30. The calculations were per-
formed for Da=32310−6 and Da=32.

For small Damköhler number, the results are not influ-
enced by the discretization. For large Damköhler number,
only the macroscopic permeability forNc=120 is slightly
different at the beginning of the deposition. Thus, discretiza-
tion is shown to play a very small role.

B. Influence of the Damköhler number

As it was mentioned before, the basic physical parameter
is the Damköhler number which compares the reaction rate
to convection. For the small Damköhler number equal to 8
310−6 considered in the illustrative case, convection is very
large compared to reaction. As it was shown in this case,
deposition causes smooth changes to the porosity field. The
evolution of the mean porosity can be predicted by the el-
ementary solution derived for a situation where the concen-
tration C8 and the reactivityg8 are constant. Another behav-
ior is expected when the Damköhler number is high. The
domination of reaction over convection can cause significant
variations of the concentration field and affect the macro-
scopic properties. In order to investigate the role of the
Damköhler number, calculations were done for Da=8
310−2, 0.8, 8, and 80. The initial porosity field corresponds
to the one used in the illustrative case. Note that the
Damköhler number is based on initial quantities such as the
macroscopic velocityV* and the reactivityg0. Both will vary
during deposition and the actual Damköhler number will in-
crease.

The macroscopic parameters for the various Da are com-
pared to the illustrative case in Fig. 7. The curves for Da
=8310−2 collapse onto the curves of the illustrative case
where Da=8310−6 fFig. 7sadg. On the contrary, for Da=8
and 80, the behavior of the mean porosity differs consider-
ably from the illustrative case. The mean porosity curve is
not exponential anymore. At the beginning of deposition, the
mean porosity diminishes more slowly than for the illustra-
tive case and after a certain time it decreases sharply. Clog-
ging occurs earlier than for the illustrative case. For Da
=0.8, the mean porosity values match well the results for the
illustrative case except for the times close to clogging. Clog-
ging occurs a bit later than for the illustrative case.

The mean porosity evolution can be approximated by a
polynomial of degree 3 in all casessTable Id. The evolution
of the total amount of deposit per unit volume is proportional
to the mean porosity change.Qdep is shown as a function of
time in Fig. 7sbd. Finally, at clogging, the total amount of

FIG. 9. Evolution of the correlation functionsRisud sad and
R'sud sbd. The dimensionless lengthu is normalized by the half-
size of the unit cell. Da=8.
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FIG. 10. Evolution of a porous medium with an initial lognormal porosity distribution. Each line corresponds to a different time. The left
row is the probability densitygsln «d of lns«sr 8 ,t8dd; the central one is a cross section of the porosity field parallel to the pressure gradient;
the right one is perpendicular to the pressure gradient. Da=80. The porosity convention is given by the vertical bars.
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deposit per unit volume is nearly the same for all cases. The
macroscopic permeability as a function of the dimensionless
time is shown in Fig. 7scd, the results for Da=8310−6, 8
310−2, 0.8 and 8 are close to each other; only Da=80 differs
considerably from the others. Thus, it is remarkable that the
macroscopic permeabilities for Da=8 and Da=80 collapse
onto a single curve as a function of the mean porosity. For all
cases,K is a power ofk«l with an exponenths=3.55 for
small Damköhler numberssDa=8310−6 and 8310−2d and
hh=4.22 for high Damköhler numberssDa=8 and 80d.

Thus, two different regimes are observed for small and
large Damköhler numbers. The evolution of the porosity field
for high Da can be observed in Fig. 8 for Da=8 and in Fig.
9 for Da=80. Contrarily to small Da, a large proportion of
matter is deposited in the regions where porosity is high.
This modifies the correlations displayed in Fig. 10 for Da
=8 and in Fig. 11 for Da=80. At clogging, the porosity field
is nearly uniform.

The case where Da=0.8 is different from the rest of the
results. At the beginning of deposition, the evolution of the
porosity field is analogous to the illustrative case where Da is
small. The porosity field sections and the probability densi-
ties are displayed in Fig. 12. The evolution of the correlation
functions is shown in Fig. 13. At clogging, the porosity field
is not uniform as for large Damköhler numbers, but the prob-

ability density gsln «d is less spread than for small
Damköhler numbers. There are no regions with high poros-
ity. Thus, the situations where Da<1 can be considered as
intermediate between the regime where convection is domi-
nant Da,1 and the regime where reaction is dominant
Da.1.

It is necessary to add that the clogging timeTc8 has no
particular importance since clogging has been somewhat ar-
bitrarily defined. Hence, attention should be focused on the
evolution of the macroscopic parameters with time.

In the following, each calculation will be done for a small
and a large Damköhler number, since the system is expected
to behave differently in these conditions. More precisely, we
mean the evolution of the probability densitygsln «d and the
relation between the macroscopic permeability and the mean
porosity. As for the mean porosity evolution, it will be shown
later that the exponential decrease for small Damköhler num-
bers only occurs for lognormally distributed porosity fields.
Polynomial approximations of the mean porosity values pro-
vide a very good fit for all the results described in this work.
Note that they are only valid for timest8P f0,Tc8g. The data
are gathered in Table I.

C. Influence of the parameters characterizing the initial
porosity distribution

This section studies the influence of the meank«0l and of
the standard deviations0 of the initial porosity field on the
evolution of the macroscopic parameters during deposition.
The initial porosity field is assumed to be lognormally dis-
tributed. The ratiol /Lc is equal to 8/30.

The first test addresses the effect of the mean porosity
value.k«0l is taken to be equal to 0.4 ands0=0.2. The sec-
ond and third calculations are done fork«0l=0.2 ands0

equal to 0.1 and 0.3. The calculations were performed for
Da=8310−6 sFig. 14d and Da=8. The calculated mean po-
rosity values are compared to the analytical solution derived
for a homogeneous medium. As it can be seen, for situations
where the ratios0/ k«0l is small, the mean porosity is close to
the analytical solution for a homogeneous medium. Note that
the mean porosity decreases faster for the homogeneous me-
dium than for the heterogeneous ones. The clogging time
increases withs0/ k«0l. Moreover, it is obvious now that the
exponential decrease of the mean porosity value takes place
only for heterogeneous systems withs0/ k«0l sufficiently
large.

The amount of deposit necessary to clog the medium is
higher for smallers0, but the variations are not significant.
The initial porosity value strongly affectsQdep fFig. 14sbdg.
The higher the initial mean porosity, the larger the deposit
amount necessary to clog the medium.

The macroscopic permeability as a function of the mean
porosity does not depend on the average statistical properties
of the initial field. The results collapse onto a single curve for
both Damköhler numbersfFig. 14sddg. The macroscopic per-
meability evolutions are different, because of different mean
porosity values.

D. Uniform, Gaussian, and self-affine porosity distributions

The random porosity field is characterized by the porosity
probability density and the spatial organization of the porous

FIG. 11. Evolution of the correlation functionsRisud sad and
R'sud sbd. The dimensionless lengthu is normalized by the half-
size of the unit cell. Da=80.
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FIG. 12. Evolution of a porous medium with an initial lognormal porosity distribution. Each line corresponds to a different time. The left
row is the probability densitygsln «d of lns«sr 8 ,t8dd; the central one is a cross section of the porosity field parallel to the pressure gradient;
the right one is perpendicular to the pressure gradient. Da=0.8. The porosity convention is given by the vertical bars.
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material; this latter aspect can be described by correlation
functions such ass3.18d. Four different porosity fields were
used in this study, namely Gaussian, lognormal, self-affine,
and uniform. The detailed description is given in Sec. III B.
Gaussian and lognormal fields are characterized by the same
Gaussian correlation function; they are useful to study the
influence of the porosity variability on the output results. On
the other hand, Gaussian and self-affine fields have the same
Gaussian distribution of the porosity values, but their spatial
organization is very different due to different correlation
functions. By comparing these two cases, one can estimate
the influence of the spatial correlation on the results.

All the correlated fields are generated withk«0l=0.2 and
s0=0.2. For the self-affine distribution,H was taken equal to
2. The uniform distribution corresponds to porosities uni-
formly distributed over the intervalf0,0.4g. The uniform dis-
tribution is distinct from the others since it is not correlated

and sinces0 is determined by the interval of variations; here
s0

u<0.115.
The porosity fields are shown in Fig. 1 and their aspects

are seen to be very different. In the uniformly distributed
porous medium, porosity changes abruptly because of its un-
correlated character. The Gaussian porosity field is character-
ized by smooth porosity changes, and regions with high po-

rosity and low porosity are clearly distinguishable. The
aspect of the lognormal porosity field is similar to the Gauss-
ian one, but the variations are more pronounced, i.e., the
porosity is either very small or very high. The self-affine
porosity field displays a more complex spatial structure since
both sharp and smooth changes occur around a single el-
ementary cube.

The macroscopic parameters derived for these initial
fields are shown in Figs. 15 and 16. As expected, the case of
the uniformly distributed porosity field is distinct from the
others. For both Damköhler numbers, the mean porosity
value decreases faster than for the other cases. For small
Damköhler numbers, results for Gaussian and self-affine
fields collapse onto a single curve. For large Damköhler
numbers, they are close to each other, yet different. Remark-
ably, the exponential decrease of the mean porosity for small
Damköhler numbers is only valid for the lognormal distribu-
tion. For the other distributions, the variations can be ap-
proximated by a polynomial of degree 3. The least-square
approximation coefficients are given in Table I.

The evolution of the mean porosity depends much on the
spatial correlation of the porosity field as well as on the
variability of the porosity values. At the beginning of depo-
sition, the total amount of deposit per unit volume as a func-
tion of time is nearly the same for all the cases. Close to
clogging, the results for the lognormal porosity field differ
from the others with less deposited matter.

For all Damköhler numbers, the macroscopic permeabili-
ties are of the forms5.5d. For small Da, the curves of the
macroscopic permeability as a function of the mean porosity
are very close to each other for all cases. They are slightly
different only for times close to clogging.

For large Da, the relationship between the macroscopic
permeability and the mean porosity depends on the spatial

FIG. 13. Evolution of the correlation functionsRisud sad and
R'sud sbd. The dimensionless lengthu is normalized by the half-
size of the unit cell. Da=0.8.

FIG. 14. Influence of the mean initial porosity and of its stan-
dard deviation on the macroscopic properties. Data are for
k«0l=0.4 and s0=0.2ssd , k«0l=0.2, s0=0.1spd , k«0l=0.2,
s0=0.3sLd, illustrative caseshd. The solid line represents a least-
square data fit. The elementary solutions4.6d is shown by the
dashed-dotted lines. The dashed line corresponds to the analytical
solution for a homogeneous medium with«=0.2. l /Lc=8/30. Da
=8310−6.
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organization of the porous medium. For Gaussian and log-
normal porosity fields, the curves of the macroscopic perme-
ability as a function of the mean porosity are very close to
each other. Note that these porosity fields have the same
Gaussian correlation functions3.18d. On the other hand, the
corresponding results for the self-affine porosity field are
very close to those for the uniformly distributed porosity
field.

VI. CONCLUDING REMARKS

Deposition in statistically homogeneous media and the
subsequent clogging have been studied. A numerical code
has been developed which simulates the fluid flow, the trans-
port of a reactive solute in heterogeneous porous media as
well as the alterations of the macroscopic properties of the
porous medium due to the deposition of the solute onto the
pore walls. The code has been tested on several situations
where the analytical solution is known and a good agreement
was usually observed. Statistically homogeneous media were
approximated by spatially periodic media. Since these mod-
els are discrete, it is always necessary to validate the choice
of several unphysical parameters such as the size of the unit
cell or the space discretization step, etc., applied in the simu-
lations. Appropriate tests have been performed. The results
have shown that the parameter set was chosen correctly.

The code was systematically applied to predict the evolu-
tion of the macroscopic properties of the porous medium
during the deposition of a chemically reactive solute. Some
important features were revealed by this study. Starting from
the same porous medium, one obtains different evolutions of

the porous medium properties depending on the Damköhler
number which compares the effects of reaction and convec-
tion. When convection is dominantsDa,1d, the porous me-
dium properties change smoothly. At clogging, the porosity
field is analogous to the initial one. The regions where po-
rosity is high, still exist. When reaction is dominantsDa
.1d, the porous medium is nearly uniform at clogging. For
Damköhler numbers close to 1, the evolution of the porous
medium is similar to the case Da,1 at the beginning of
deposition, and similar to the case Da.1 for the times close
to clogging.

The heterogeneity of the medium was observed to have a
strong influence on the evolution of the mean parameters.
The evolution of the mean porosity value depends on the
statistical characteristics of the initial porosity field while the
macroscopic permeability as a function of the mean porosity
was found to depend mostly on the spatial organization of
the porous material.

This study is a first step towards the understanding of
deposition phenomena on the macroscopic scale. It would be
interesting to extend this work to other cases, particularly to
nonuniform local deposition and different constitutive rela-
tionships.
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FIG. 15. Evolution of the macroscopic parameters for differ-
ently distributed porosity fields. Data are for Gaussian porosity dis-
tribution ssd, self-affinespd, uniform porositysLd, lognormal dis-
tribution shd. The solid line represents a least-square data fit. The
elementary solutions4.6d is shown by the dashed-dotted lines. The
dashed line corresponds to the analytical solution for a homoge-
neous medium with«=0.2. l /Lc=8/30. Da=8310−6.

FIG. 16. Evolution of the macroscopic parameters for differ-
ently distributed porosity fields. Data are for Gaussian porosity dis-
tribution ssd, self-affinespd, uniform porositysLd, lognormal dis-
tribution shd. The solid line represents a least-square data fit. The
elementary solutions4.6d is shown by the dashed-dotted lines. The
dashed line corresponds to the analytical solution for a homoge-
neous medium with«=0.2. l /Lc=8/30. Da=8.
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