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Deposition in porous media and clogging on the field scale
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Deposition is modeled as a first order reaction on the Darcy scale for porous media which are statistically
homogeneous. An elementary analytical solution is derived. A parametric study was done with a three-
dimensional code which is briefly described and checked in media where the solution is known. The role of the
parameters, including the artificial ones, is discussed with an illustrative example. When the Damkd&hler
number is small, deposition causes smooth changes to the porosity field; the evolution of porosity is well
described by the analytical solution. Very different results are obtained for large Damkdéhler numbers. The
influence of the correlation of the initial porosity field is studied.
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I. INTRODUCTION caused by hydrodynamic, physico-chemical and chemical in-

Deposition in porous media is a process of high practicaferactions between fluids and reservoir rocks. efual. [1]
and fundamental interest, since this problem arises in varioudeveloped a reactive fluid flow and geochemical transport
branches of industry, particularly in chemical, civil, and pe-numerical model for evaluating long-term gdisposal in
troleum engineering. For instance, the deposition at the solideep geologic formations. This study makes use of an exist-
surface of a reservoir may considerably diminish the oil proing nonisothermal reactive geochemical transport model
duction. Other standard applications include water treatmemtouGHREACT[10]. It was applied to a one-dimensiordD)
and environmental studies of transport of chemical contamiradial flow which schematizes flow around a well. No
nants. A recent application is the reduction of the release ratehange in the transport properties was taken into account
of carbon dioxide to the atmosphere by mineral trapping inthough it is possible.
deep permeable geologic formatiof¢u et al. [1]). As a rule, the results of the pore scale simulations are
The topic of changes in hydrologic properties due tocompared to the experimental measurements on the core
chemical reactions has recently been reviewed by Sargtalli samples which are supposed to be homogeneous. Reservoir

scopic parameters which vary in space and time. dtfiwl.

trapping of fine particles at pore throats, or to ion exchange; . . d . .
X 1] describe a two-dimensional geochemical simulator,
etc. These processes cause morphological changes of ?E?RF.A, and its application to matrix acidizing analysis and

gﬁargszgéce and can lead to porosity and permeability dedesign. The effects of diagenesis on the properties of sand-

Sahimiet al. [3] reviewed models of fluid-solid interac- Stone reservoirs were addressed by Le Getlal.[12]. They
tions in porous media. Shapiro and Brenféf studied dis- d_eveloped a three-dlmensmnal, two phase,_rea_ctlon-transport
persion of a chemically reactive solute in spatially periodicSimulator nameciAPHORE which couples kinetically con-
porous media; however, the geometry Of the medium Wagolled dissolution and preCIpItatlon of minerals with equ|l|b'
assumed to be fixed. The precipitation of a reactive solute d&ium reactions of chemical species in the water phase. In
the fluid-solid interface in porous media and the subsequerigservoir simulations, the ability of the core-scale data to
morphological changes of the pore space were discussed bgpresent the macroscopic properties of discretization blocks
Salleset al. [5]. Matthewset al. [6] simulated the subtle is not obvious since in real rocks the macroscopic parameters
changes in void space dimensions which occur during thean vary within a block. This variability must be taken into
artificial deposition of small amounts of illite and kaolinite account and the validity of the permeability-porosity rela-
within sandstones. They compared the mercury intrusionionships must be verified.
curves of an untreated plug of sandstone and of a similar An appropriate averaging technique requires an investiga-
plug in which the deposit has been precipitated. tion of the deposition phenomenon on the intermediate scale

Deposition in fracture networks is not often addressed invhich corresponds to the discretization block. The major
the literature. Mourzenket al.[7] and Békriet al.[8] stud-  purpose of this work is to implement this technique numeri-
ied deposition in a single fracture. They considered detereally and to study deposition and the subsequent changes of
ministic and random fractures and the changes in fracturéhe macroscopic properties in statistically homogeneous po-
morphology were taken into account. Deposition in fracturerous media. To describe such media, a discrete model was
networks is lacking at the moment and the properties havesed with uniform porous subdomains possessing various
not been upscaled yet. physical properties. Statistically homogeneous materials are

Chang and Civah9] developed a model which can satis- viewed as being spatially periodic, i.e., as composed of iden-
factorily simulate the permeability alteration mechanismstical heterogeneous cells.
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Section Il provides a general overview on the deposition _ K
process of a chemical solute and on subsequent changes of Ve VP, (2.7)
the macroscopic properties of the porous medium. We con-
sider a three-dimensional transport of the solute in the preswhereK is the permeability tensoy the fluid viscosity, and
ence of a first order irreversible reaction at a fluid/rock sur-P the pressure.
face. The coupling between the changes of macroscopic The pressure field may be obtained by solving the conti-
parameters and the reactive transport uses a quasisteady Imyty equation,
pothesis. In Sec. IV, this assumption is justified and the cor- _
responding algorithm is described. The flow and transport V.v=0. 2.2
equat_lons.are sol_ved humerically by means of a finite volum%\ nonzero macroscopic pressure gradient is imposed along a
technique; porosity changes are governed by a balance equa- S .
) e ) S Iven direction over the unit cell,
tion. A brief discussion on the code performance is given at
the end of the section. o . VP = const. (2.3
Section Il provides the necessary constitutive equations
derived from previous studies on the local scale such as th&his direction is arbitrarily chosen to be thexis. Note that
relation between porosity and permeability, the local disperdue to the deposition process, the permeability tens®.it)
sion tensor and the local deposition rate. It gives also thelepends on time.
initial porosity fields whose evolution will be studied. The
numerical algorithm is detailed in Sec. IV. An elementary B. Convection-dispersion
solution for the porosity evolution is derived; it will be sys- . .
tematically compared to the numerical results. The main di- On the macroscopic scale, the transport of a reactive sol-
mensionless quantities are defined in this section. ute is governed by a three-dimensional convection-
Section V presents the numerical results. Preliminarydispersion equation with reaction
verifications of the code on several configurations are de-
. L S . dCe —
tailed. Then, three realizations of statistically equivalent me- —+V.(CV)=V -(d-VC)-R, (2.4)
dia are generated and very close results are obtained for ot

them. The influence of the unit cell size was studied by com- ] ) e
paring the results for various ratios of the correlation lengthvhere C is the solute concentratior, the porosity,d the

and of the unit cell size. The influence of the discretization™acroscopic dispersion tensor aRdhe reaction term. It is
has been studied; it appears that the size of the elementafpSumed that on the macroscopic scale, dispersion is Fickian
cube is small enough that the discretization does not infludnd can be described by a dispersion tei$8}. Moreover,
ence the results. The influence of the Damkohler number i depends on the local porosity and on the fluid velocity as it
studied; two regimes are shown to exist for small and highwill be seen below.

Damkéhler numbers. The main statistical parameters of the

initial porosity field are also briefly addressed. Finally, the C. Reaction and porosity changes
influence of the nature of the initial porosity field is studied. ) i . o
A few concluding remarks end this paper. In the present work, an irreversible first order reaction is

considered. Note that the reaction occurs at the solid-fluid

interface on the pore scale. On the macroscopic scale, the

heterogeneous reaction is expressed by means of a sink term
Let us start by a general presentation of the problem; iniR [14] which can be modeled as

tial configurations of the studied porous media are illustrated {

II. GOVERNING EQUATIONS

ve(C—-C*) if C>C*,
0 if C<C*,

in Fig. 1. Consider some chemical solute contained in under-
ground water. While flowing through the porous medium, the
solute precipitates onto the solid surface of the medium. ) . ) )
Fresh solute is supposed to be brought so that the meaihereC* is the saturation concentration on the solid surface

volumetric liquid concentration remains constant all the@ndy the volumetric reaction rate:is an unknown function
time. Moreover, we assume that the macroscopic gradient o¥hich depends on deposition on the pore scale. It will be
concentration is negligibly small. This may correspond to adiven later. N _ o

physical situation where the region of interest is located suf- Due 1o deposition, porosity decreases with time as de-
ficiently far away from injection/production wells. Deposi- Scribed by the balance equation

tion implies porosity, permeability and other macroscopic pa- 9

rameter changes. After a very long time, if fresh solute is f—(1-¢)=R, (2.6)
constantly brought by the fluid, the permeability of the me- ot

dium will tend towards zero.

(2.9

wheref is the solid fraction in the depodib]; for instance,
for a random packing of monodisperse sphefas,equal to

A. Flow 0.64
The seepage velocily inside the porous domain is gov- It is generally assumed in this paper that the amount of
erned by the Darcy equation, precipitating solute is unlimited and that the porosity can
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FIG. 1. Examples of initial porous media. Porosity is given by the grey gsele the vertical baysExamples are fofa) a lognormal
porosity field with a Gaussian correlation functigmhich is studied at length in Sec. V)A(b) a uniformly distributed porosity fieldic) a
Gaussian porosity fieldd) a self-affine porosity field. For the three casbk (c), and(d), (g¢)=0.2, 0o=0.2, and\/L.=8/30.

decrease until the porous medium is clogged. This hypothity y; note that it has the dimension of the inverse of a time.
esis will be discussed at the end of Sec. V A 2. The average liquid concentratid®, is kept constant with
time and it may be expressed as

D. Dimensionless formulation

In order to derive the dimensionless parameters which f Cedr
control the problem, the governing equations should be ex- a
pressed in dimensionless form. Let us define the dimension- Co=—F—, (2.8
less variables f ed3r
_ 0
r — d C-C*
rr=—, d'=—5, t'=yt C'= -, _ _
L Yol Co-C where() is the whole domain volume.
Let us define the Damkoéhler number by the standard re-
% v f lation
vVi=—  y=— f'=——— V' =LV,
V* Y0 CO_ C*
L
27 Da=22 (2.9
V*

where L, V* are some characteristic values of length and
velocity; it seems natural thdt is chosen to be the field
scale. Accordinglyy, is a characteristic value of the reactiv- With the help of(2.7) and(2.9), (2.4) can be written as
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9eC’ 1 _, — = . quantities. For Rg.€[0.1, 1], the values of the coefficients
V- (CV)=V - (d-V'C) =~ yeC. are of the order of
ot Da
(2.10 B,=0.175, ;=0.305, B, =0.127, a, =0.159.
The Damkohler number compares the reaction rate to con- (3.79

vection. Alternate choices are of course possible for the unit

and the dimensionless numbers. Por Pac<[1,16], they are of the order of

lIl. THE CONSTITUTIVE EQUATIONS AND THE £=0.175, @=1.285 p,=0.127, «, =080
POROSITY FIELD (3.7

A. The constitutive equations Since(3.4) is valid in a local coordinate system, one must
I - make coordinate changes depending on the velocity orienta-
Constitutive parameters such as the permeabilitand 4 ot each point where the dispersion tensor is needed.

the macroscopic dispersion tengbdepend on the pore ge-  The last quantity of interest is the volumetric reaction rate
ometry of the medium. Their determination is a local scaley (cf. Sec. 11 Q. It can be estimated in a very crude way
problem which involves the analysis of the microstructure offrom the knowledge of the surface reaction rate constgnt
the porous medium. In this study, a simple model is used fo{yhich does not depend on the morphology of the pore space.
K, This can be done as follows. The hydraulic radinss usu-

K =Kgle”, (3.1) ally defined as the ratio of the fluid volumé& to the pore
surface are&,,
whereKj is a characteristic permeability ahdhe unit ten-
sor. The exponeny is generally taken equal to[45-17. m= ﬁ (3.9
The dispersion tensor can be approximated as a sum of S
the macroscopic diffusion tensal, and of the tensod* v/ ands, are relative to a total volume. The reaction term
which depends on the local Péclet number, R is proportional to the pore surface area per unit volume
d=do+eDyd*, 3.2
0= 3.2 R:kp%(c—c*):ya(c—c*). (3.9

whereD,, is the molecular fluid diffusion. The macroscopic

diffusion coefficient will be written as Hence, the effective volumetric reaction rate constant is

— )
do=Dyl &%, 3.3 y:ﬁ@_ (3.10
which corresponds to the relation obtained by Coeathal. m

[17] for random packings of spheres in agreement with Ar-
chie’s law with a cementation exponent equal to 2. In a co
ordinate system where theaxis is parallel to the Darcy

The hydraulic radiusn decreases during the deposition
‘process. It is difficult to predict the evolution of this param-
eter. There are several useful relations described in the litera-

velocity v, the tensod* has a diagonal form ture for the hydraulic radius. Usually depends on the mi-
d o0 o0 croscopic geometry of the medium. We suppose that locally
. | the deposition process is limited by the surface reaction ki-
d*=|10 d, O [, (3.4 netics. In that case, a uniform deposition is expedtd
0 0 d Since the medium is supposed to be granular, the grains are

coated by a uniform layer of deposited matter. For random

when the porous medium is locally isotropi;is the longi- packings of monodisperse sphergscan be expressed as

tudinal dispersion andl, the transversal dispersion. They
can be estimated as power functions of the local Péclet num- m(t) = mee(t)®* (3.1)

ber Pg,, . . . .
wherem, is some constant. This relation roughly describes

d=BPdl, d, =p, PdL. (3.5 the hydraulic radius variations for random packings of
monodisperse spheres when the initial porosity is about 0.4.
It was shown that the specific surface area of consolidated
V* | media is only slightly affected by a slow deposition process
P&oc = D (3.6)  [7,12. For small porosities, the hydraulic radius is taken to
m be constant. Note that the relations presented above are only
wherel is some local characteristic lengthcan be chosen meant to provide reasonable orders of magnitude.
equal to the correlation length of the pore space. In this Since, on the pore scale, the deposition process is as-
work, | is taken equal to 0.5 mm. The molecular diffusidp ~ sumed to be reaction-limited, it is useful to provide an ex-
of a reactive solute in water phase is of the order o°10.  pression for the relationship between the Damkohler num-
The approximation of the results obtained by Coedhal. ~ bers Dg and Da on the pore scale and on the field scale,
[17] for random packings of spheres yields the following respectively. Dgis expressed as

The local Péclet number is defined as
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Dap = EE' (3_‘]_2) é(k) o [1 + ()\xkx)2 + ()\yky)2 + ()\zkz)z]_ler (319)
v
P whereH is the Hurst exponent. The Gaussian correlated field

WherEUp iS the |Oca| intel’stitial Velocity. Thus, Qand Da is genera‘[ed by means Of the Fourier transform method

are related by which is described by Adler and Thovét8].
L The fields generated by these two correlations are very
Da:ﬁsp_D . (3.13  different and will be illustrated in Sec. V.
rno *

Smpe on the local scale deposition is assumed to be reaction- IV. PRELIMINARIES TO THE NUMERICAL STUDY
limited, one has

A. Numerical solution
Da, < 1. (3.19
) The problem is solved in a parallelepipedic cell dis-
Hence,(3.13 shows that because of the length scale ratiocretized intoN,, x Ny X N, elementary cubes. Each elemen-

Da can be very large while Ras very small. tary cube has given porosity, diffusion, and permeability ten-
sors. The continuity equation, the reactive transport equation,
B. Description of the initial porosity field and the equation for porosity changes were discretized using

o . a finite volume method. The pressure and concentrations are
The porosity field is generated numerically as a randon

i ) Fvaluated at the cube corners. The pressure field was ob-
correlated or noncorrelated field. Usually, local properties of_. : : . ;
tained by using a box integration technique.

the real porous media are described by lognormal distribu- To solve the transport equations, one is usually interested

tions [20]. In this paper, uniform and Gaussian distributions, =~ shock-capturing numerical model, which does not pro-
were also used.

The uniform distribution corresponds to porosit valuesduce spurious oscillations near discontinuities and yet re-
. o resp P y mains stable. These properties are quite important for simu-
uniformly distributed on some interval, for example, between

lating convection-dispersion phenomena, especially for

0 aan? 0'4‘b bility densitv of the G ian distribution i situations where convection is dominant. Therefore, our
press?adpr;s abiliity density ot the L>aussian distrbution IS €X- o ain effort was Fo_reduce numerical dispersi_on. One po_ssible
way to achieve it is to apply an operator-splitting technique.
1 1(x= po)? The idea is to solve the convection part up to a certain time
fX)=——=—=exp-—5 |, (3.19  stepét and then to add the dispersive effects in a separate
V2mog 2 og

step. The second order flux limiting scheme was applied to
solve the convection equati¢h9]. For this method, the best
jaccuracy is obtained when the time step is chosen as large as
the stability criterion for the convective part allows. Operator
splitting has the advantage that the time step for the convec-
tion part may be optimized to reduce numerical dispersion.
Then, the dispersive part may be solved implicitly or exlic-
LN = eXF(MG + %gé) oln = expug + 205) — uly. itly. Here, thg Qispersion—reaction part was.addre_sse.d by a
classical explicit scheme. When the convective shiftdiois
(3.18 calculated, the dispersion equation is solweiimes for time
The spatial organization of the porosity field also needs t&tep dots=dt/n. Usually, convective transport is predominant

be defined. Two major types of structures can be easilyn underground formations. Thus, the restrictions on the con-
implemented by means of the correlation function vection time step are more severe than that for dispersion and

where ug is the mean and;zG the variance.

Another class of random distributions is the lognorma
distribution. If yg is a Gaussian random variable with mean
uc and varianceo3, the variabley, y=expyg) is lognor-
mally distributed. Its mean and variance are given by

n=1.
clu) = ([e(x +u) = pelle(x) = pe D) (317 The code was tested on several cases where the analytical
((e(X) = )% ' ' solution is available. A special attention was put on checking
the extreme situations, such as pure convection, convection-
where u,=(e). dispersion, diffusion-reaction, and convection-reaction. Usu-
The porosity field is said to be Gaussian when its correally, a good agreement between numerical results and ana-
lation C is Gaussian, lytical predictions is observed.

) ) ) In Sec. Il, the governing equations are introduced into the
Clu)=d2 exp[— (%) _ (Ex) _ <U_Z> } (3.19  framework of a continuous description. To solve these equa-
Ay Ay A, tions numerically, a quasisteady hypothesis is assumed. The
i idea is the following. As long as the porosity changes are not
wherel, Ay, A, are the correlation lengths along they,  gjgnificant, i.e., they do not exceed a valke,,, prescribed
andz directions, respecnvelyg is the shift with components advance, we suppose that the macroscopic parameters and
(uy,Uy,U,). Let us denote byC(k) the Fourier transform of |ocal velocities do not change. Thus, the conservation equa-
the correlation functiorC(u). Self-affine porosity fields are tion for pressure is solved with constant parameters, i.e., for
defined by a fixed situation. Then, asymptotically the concentration field
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is expected to decay exponentially with time, but uniformly
in spacg4]. This corresponds to

Initialization
of the macroscopic parameters

C'(r',t')=C'(r")exp- Bt'),

whereB is some decay rate. X o .
. . . and macroscopic permeability calculations
Hence, when this exponential regime takes place, the fol- (performed by the "BOX6” code)
lowing ratio over a constant time sté’ becomes constant: I

|
f C'(r',t")d’
Q

4.7

Velocity field

Solution of the reactive transport equation
by the finite difference method

= exp(B&Y). (4.2)

J C/(r/,t/ _ &1)d3r/
Q
Convergence test
Thus, denote
C/(rr,tr)d3rr OUTPUT
a(t/) =In Q (43) Calculation of the deposited matter
f C'(r',t' = 8t")dr’ No clogging
O

/

The convergence test consists in checking the absolute valu percolation test
of the time derivative ofa(t’). We assume that the time
necessary to reach such a regime is very small compared t
the deposition time. Hence, the transport equations are iter
ated until the concentration field reaches the exponential re-
gime.

Then, the porosity changes can be easily obtained as func
tions of time by solving Eq(2.6). Thus, it is possible to

Updating of the macroscopic parameters

Clogging

calculate the timer during which the maximal porosity
changeAg; exceeds the prescribed threshadld,,,, in any
elementary cubg,

FIG. 2. Schematic representation of the algorithm.

(9 /

at,(l—s)=%sC’. (4.5
7={8"1&i(ty) — &i(ty+ &) = Aenag-

(4.9
The new values of the porosity field and of the OtherI\/_Ioreover, this relation can be averaged over the cell and it

macroscopic parameters are calculated according to th’@emS an exponential decay for the average poroily
amount of matter deposited duringin each elementary ¥
cube. Then, the calculations are iterated with these new pa- (&)= <so>exp(—t’FC’).
rameters.
The program is stopped when the macroscopic permeabiFhis elementary solution will prove to be very useful.
ity of the porous medium is £aimes smaller than the initial
one. Some additional comments on this point can be found at
the end of Sec. VA 2. A schematic representation of the

algorithm is given n Fig. 2. o The choice of the characteristic parameters is very impor-
~ Several assumptions used in this problem need to be cogant since they define the dimensionless parameters control-
firmed by quantitative comparisons with experlmental dat_a"ng the process. The characteristic lengtiis chosen equal
but to the best of our knowledge, no experimental work isis the correlation length of the porosity field. The charac-

available on this subject. Such a verification is especiallyteristic volumetric reactivity constant is chosen to be equal to
necessary when the deposition rate is large, with rapid

(4.6)

C. Characteristic quantities, output quantities, and
dimensionless parameters

changes of the geometry of the pore space; in such a case, _ kK 4.7)
the concentration profile may never reach the exponential Yo= (mg)’ '
regime.

where(my) is the average hydraulic radius at the initial time.

Let us now give the major output quantities. At the field
scale, one is usually interested in the macroscopic properties
of the medium. Several macroscopic quantities were system-
atically measured. The first one is the average macroscopic
porosity(e),

B. An elementary solution

An elementary solution can be derived frdi2.6) when
the concentratiol©’ and the reactivityy’ are assumed to be
constant. Obviously,
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FIG. 3. Porosity of a bilayered porous medium for cases A and
B. Flow is parallel to thex-axis. The white and grey zones corre- FIG. 4. Numerical results in a bilayered medium for cases A and
spond t03(1’:o.2 andsg:0.4, respectively. B denoted byO and:, respectively. Flow is parallel to theaxis.
The solid lines represent the analytical solutions.

(&) f ,S(t’)d3r' the main pressure gradient aRJ (v) is calculated perpen-
<—t>' = (4.8  dicular to the main pressure gradient
€o f AY M

e(tod’r ([e(x +u) = wlle(X) = w.))

, &l R(u) = K el (4119

([e(x) = me]?)

where )’ is the unit cell. The macroscopic permeability is

determined by means of the Darcy law R, (v) = ([e(x+V) = pelle(X) = p]) (4.11b
v, ) Cx-pp
K o =t’, (4.9) whereu andv are spatial shifts parallel and perpendicular to
Ko Vv, VP, respectively.
0 It is obviously shown by the previous developments that

where V/, is the macroscopic seepage velocity at tihe th_e_d|men3|onless parameters are numerous, namely, the ar-
Duri tth imulati th . i tificial parameters which are only useful in the course of the
During the simulations, the macroscopic pressure gradierf, merica| calculations, but which do not possess any physi-

VPT'rS] kfF;t Iconstan:. fd i it vol funct cal meaning such as the size of the unit dg}l and the

f i e tc,).a a.mourlmj ot deposit per unit volume as a func Ionporosity stepAena the basic physical parameter Da, the

ottimet 1S given by parameters which characterize the initial porosity distribu-
tion.

t 1
Quedt’) = f — f ¥ eC'dr’dt’ . (4.10
tg Q Q' V. RESULTS AND DISCUSSION

Two autocorrelation functions will be used to characterize In this work, the evolution of the macroscopic parameters
the evolution of the porosity fieldR,(u) is calculated along with time is taken into account by means of a quasisteady
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Histogram | 1

()] Ine
t' = 1.0244 (clogging)
0.8
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FIG. 5. Evolution of a porous medium with an initial lognormal porosity distribution. Each line corresponds to a different time. The left
row is the probability densitg(In ) of In(e(r’,t")); the central one is a cross section of the porosity field parallel to the pressure gradient;
the right one is perpendicular to the pressure gradient. Da¥®8. The porosity convention is given by the vertical bars.
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1 i = t=0 I I (ea) =(ep) =0.5¢&; *+ &), (5.1b

—— '=0.3509 . . .
! whereg; is the porosity of théth layer. The calculated mean

porosity values are compared with the analytical solutions in
Fig. 4(@). For both cases, the numerical results match the

oskY |- t=05508
' g » 1| —— t'=1.0244 (clogging)

_ 08r \ o T analytical curves very satisfactorily. Small differences are
= \ ' only observed at large times when porosity is low. Note that
< 04r in the calculations, the hydraulic radius was assumed to be
ool constant for low porosity values; this simplification explains
: the small differences between numerical and analytical re-
ol sults in this case.
For case A, the macroscopic permeabiktyis the sum of
02 ; the permeabilities of the layets,=K,+K,. For case B, the

0 0.2 0.4 0.6 0.8 macroscopic permeabilitfg=(K;*+K5") ™. Remind that the
permeability of each layeK; is given by(3.1). Numerically,

; ; the macroscopic permeability is obtained by means of the
: : ‘:=° i Darcy equation. The calculated values are compared to the
1=0.3509 analytical solution in Fig. é). The agreement is perfect for

-0.5508 |
=1.0244 (clogging) both cases.

2. lllustrative case for random media

Statistically homogeneous media are considered as three-
dimensional spatially periodic media, composed of identical
unit cells of sizeL.=30 m. The cell is discretized inthi?

: : =30X 30X 30 elementary cubes. Since the lognormal distri-
ETRIIREIA S TER bution is the most common for porous med20], system-
§ § ; atic calculations have been performed for log-normally dis-
0.2 i i i i tributed initial porosity fields with a Gaussian correlation
(b) . " . . function. The initial porosity is supposed to &g)=0.2 with
a standard deviatiomy=0.2. The correlation lengtia is

FIG. 6. Evolution of the correlation functionB(u) (@ and  equal to 8 m. Because of the finite size of the unit cell, it is
RL(U) (b) for the illustrative case. The dimensionless Iength; useful to define the ratiﬁ/LC which compares the correla-
normalized by the half-size of the unit cell. Dax807°. tion length to the size of the cell. In this case/L.=8/30.

This particular porous medium is displayed in Figa)l
approximation. A test presented in the following section is The Damkdhler number is chosen to be based on the cor-
designed to study the influence of the discontinuities intro+elation length\ (cf. Sec. IV Q. We assumed Da=8107°.
duced into the code due to the steady state approach. Oth&he presence of 8 in the Damkdhler number is not arbitrary.
verifications are done in order to study the effects of theln fact in numerical simulations, it is more convenient to use
discretization of the porous medium and of the statisticathe Damkdhler number Qg, based on the size of the el-
fluctuations on the output results. ementary cubea. Dg,,, is a purely numerical parameter

which is used in the course of the numerical calculations
since its application provides the dimensionless discretiza-
A. Preliminaries tion stepsAr’ equal to 1. The corresponding Da is easily
obtained from the relation

1. Simple deterministic media

Consider a two-dimensional porous medium which con-
sists of two homogeneous layers with initial porositifgs
=0.2 andsg=0.4. We suppose that the macroscopic pressure
gradient is imposed along thedirection and is kept constant which means that Dg,,=10° yields Da=8x 10°®.
with time. The layers can be either parallel or perpendicular Before running the code, it is necessary to determine an
to thex-axis. These two situations will be referred to as case@dequate porosity thresholtk,,, for the steady state algo-

A [Fig. 3@] and B[Fig. 3(b)], respectively. For both cases, rithm described in Sec. IV A. Some numerical tests showed
the evolution of the macroscopic parameters can be predictéfiat as long as\e.,< 10 %o, the various curves collapse
analytically. In such systems, the liquid concentratdnis  onto a single curve. Hencelep,, was chosen equal to
expected to be uniform in space. Thus, it is equal to its avd0%g, in the rest of the simulations. The calculations are run
erage valueC’' =1 which is kept constant with time. Then, as long as the porous medium is sufficiently permeable. As it
was mentioned before, we suppose that the porous medium
_( 3(my), 0 3/4)4/3 - is clogged if its macroscopic permeability is *1@imes
= -t +(g) , 1=1,2, (5.19

A
Da= Dﬁhuma, (5.2

4 f’ smaller than the initial one.
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FIG. 7. Macroscopic parameters for various Damkoéhler numbers for the illustrative case. Data are fox DR&6D), 0.8 (>), 8
X 1072 (), 8 (¢), and 80(0)). The solid lines represent least-square fits.

The output quantities include the porosity field and thelV B) derived for the situation where the liquid concentration
macroscopic parameters as functions of time. Some probabi&nd the hydraulic radius are constant. Note that the variations
ity densities and cross sections of the porosity field for sucef the hydraulic radius implemented in the code are small.
cessive times are shown in Fig. 5. The left cross section is The evolution of the mean porosity as a function of time
taken at the center of the domain paralleMB and the right is shown in Fig. 7a). Since the curve is linear in a semilog
one perpendicular t¥ P; in Fig. 5, they are denoted by the plot, the mean porosity is an exponential function of time.
subscriptdl and L, respectively. This set of three pictures is The mean square approximation gives
plotted for successive times until clogging. These sections
show that porosity changes smoothly. It appears that the re- @ ~ expl- 1.72t") (5.3)
gions with low porosity are clogged first. At clogging, re- (&g ' ' '

gions with large porosity still exist. o .
The probability densitieg(In &) are displayed in Fig. 5. The (_:alculated mean porosity is quite close to the element_ary
Hence, for the initial lognormally distributed porosity field, Selution (4.6). Another important macroscopic parameter is
g(lne) is Gaussian. Since lognormally distributed valuesthe total amount of deposit per unit volurge, Figure 7b)
vary from zero to infinity, values of porosity larger than 1 gives Qgep @ a function of mean porosity. A least-square

were truncated; due to this truncation, some eIementar?pprox'matIon yields

cubc_es have a.porc.)sity equa! to 1 and Fhey correspond F(_) the Quep= (£0) — (&) (5.4)
vertical bars in Fig. 5. During deposition, the probability
density shape gets flat and shifts to the left. At each time, the total amount of deposited matter is propor-

The evolution of the correlation functions is shown in Fig. tional to the change in mean porosity during the correspond-
6. Deposition only slightly affects the correlation function of ing time interval. The evolution of the macroscopic perme-
the porosity field. This uniform reduction of porosity is ex- ability with time and its relation to the mean porosity is a
pected when the liquid concentration does not vary much. liguestion of particular interest and importance. Figures 7
this case, it is interesting to compare the obtained macroand 7d) show the macroscopic permeability as a function of
scopic parameters with the elementary solutih Sec. time and of the mean porosity, respectively; the variations of
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TABLE I. General analysis of the data. Values denotec lsprrespond to simulations where the clogging condition was not obtained due
to numerical difficulties; thus, the tim€. corresponds to the last calculated one.

& 5 .
(g =03t
e K (&) \”

N Initial distribution Da (g0 o9 ML ag a, =Y ag K_o ~ exp{@ 7 T, Qued Te)

1 Lognormal 8 10°% 0.2 0.2 8/30 -0.04 0.66 -1.44 1 3.55 1.02 0.160

2 8x 1072

3 0.8 -0.11 0.75 -1.47 1 341 1.29 0.167

4 8 -0.86 1.27 -1.29 1 4.18 0.94 0.154

5 80 0.12 -0.47 -0.61 1 4.28 0.81* 0.141*

6 8x10°% 0.4 0.2 0.39 0.18 -1.48 1 3.48 0.78 0.338

7 0.2 0.1 0.38 0.19 -1.48 1 3.55 0.78 0.169

8 0.2 0.3 -0.04 0.66 -1.44 1 3.77 1.18 0.146

9 8 0.4 0.2 -086 099 -1.44 1 4.18 0.70 0.318
10 0.2 0.1 -0.90 0.99 -1.41 1 4.16 0.71 0.160
11 0.2 0.3 -0.86 1.27 -1.30 1 4.00 1.24 0.148
12 Uniform 8x10°% 0.2 0.115 0 0.04 0.47 -1.43 1 3.20 0.91 0.178
13 Gaussian 0.2 8/30 0.04 0.33 -1.22 1 3.58 1.02 0.180
14 Self-affine -0.05 033 -1.22 1 3.35 1.06 0.186
15 Uniform 8 0.2 0.115 0 -0.01 0.53 -1.43 1 3.35 0.75 0.156
16 Gaussian 0.2 8/30 -0.39 0.69 -1.17 1 4.03 0.95 0.174
17 Self-affine -0.07 0.50 -1.24 1 3.44 0.78 0.151
18 Lognormal 8106 0.2 0.2 8/20 -0.02 0.14 -0.37 1.25 3.50 1.02 0.162
19 8/40 -0.05 0.44 -1.28 1.88 3.80 0.95 0.155
20 8 8/20 -0.18 155 -4.00 3.63 4.42 0.93 0.156
22 8/40 0.17 -0.17 -1.21 221 4.10 0.65* 0.103*

& are close to a power law which can be approximated as =0.8, suppose thaQge, is at most equal to 0.1; Fig.(B)
K (e) \7 implies thatt,~0.5. Therefore, fort’>t;, Qqep i equal
AR (_> , (5.5 to0.1
Ko (e0)

with »=3.55. Note that locally an analogous power-law
permeability-porosity relation was used with an exponent
equal to 4[see EQ.(3.1)]. The elementary solution is ob- . o ] )
tained by applying this relation to the macroscopic perme- Since the initial configurations are produced at random,

3. Statistical fluctuations

ability as a function ofe), one s_hould average over many of them in order to obtain
4 meaningful statistical quantities. However, such an approach

Ke ~ <<8_>e> (5.6) is very expensive in terms of computer time. Instead, we

Ko (e0) provide here an analysis of the output results for different

where the indexe denotes the elementary solution. The Cal_reahzatlo_ng of the |n!t|al raqdom porosity field.
culated macroscopic permeability is very close to this el-_ In addition to the illustrative case, two groups of calcula—_
ementary solution. tions were done for the same set qf parameters. The porosity
When deposition begins, the porosity decreases accordirfif!d IS lognormal; the mean porosity,) is equal to 0.2, the
to the elementary solution which is derived for a constanstandard deviatiomr, to 0.2 and the ratio/L. is equal to
liquid concentration. Then, the rate of the porosity reduction8/30. The calculations were done for Dax80° and Da
accelerates relatively to the elementary solution. =8. The agreement between the realizations is very good for
As mentioned in Sec. Il C, the amount of precipitating both regimes, except may be in the period close to clogging.
solute can be limited. Such a limitation would imply that the Therefore, the calculated macroscopic quantities are not sig-
proposed curves are valid for a tilesmaller than a certain nificantly influenced by the statistical fluctuations. Thus, the
critical time t;; for larger times, deposition stops becausetedious averaging procedure described above seems to be
there is nothing to deposit anymore. For instance, for Dauseless.
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R ' ] sented tests have shown that the ratid..=8/30would be
| —— t=0.3447 an optimal choice.

t'=0.5452 I
t'=0.9400 (clogging) 5. Influence of the discretization

e s b 4 It should be reminded that the porosity field is discretized.
: In principle, the size of the elementary cubes should be very
small compared to the correlation lengthin the practically
important case of correlated media. The test included three
1 calculations for porous media discretized into 120
X120, 60X 60, and 30x 30 elementary cubes. In all three
7 cases, the porosity field is lognormally distributed wi#)
=0.4,0=0.2, and\/L.=8/30. The calculations were per-
formed for Da=32< 10°% and Da=32.

For small Damkdhler number, the results are not influ-
, , enced by the discretization. For large Damkdhler number,
t'=0 | only the macroscopic permeability fod.=120 is slightly
'=0.3447 different at the beginning of the deposition. Thus, discretiza-

t=0.5452 | tion is shown to play a very small role.
t'=0.9400 (clogging)

B. Influence of the Damkdhler number

As it was mentioned before, the basic physical parameter
is the Damkdhler number which compares the reaction rate
- to convection. For the small Damkdhler number equal to 8
X 1078 considered in the illustrative case, convection is very

PSS .., . ; large compared to reaction. As it was shown in this case,
deposition causes smooth changes to the porosity field. The

_0.2 i i i i evolution of the mean porosity can be predicted by the el-
0 0 0.2 04, 06 0.8 ementary solution derived for a situation where the concen-

tration C' and the reactivityy’ are constant. Another behav-
FIG. 9. Evolution of the correlation function®(u) (a) and ior is expected when the Damkdhler number is high. The
R, (u) (b). The dimensionless length is normalized by the half- domination of reaction over convection can cause significant

size of the unit cell. Da=8. variations of the concentration field and affect the macro-
scopic properties. In order to investigate the role of the
4. The influence of the size of the unit cell Damkdhler number, calculations were done for Da=8

X 1072, 0.8, 8, and 80. The initial porosity field corresponds

The sizeL, of the unit cell is one of the artificial param- to the one used in the illustrative case. Note that the
eters introduced in the simulations. For correlated media, it iDamkéhler number is based on initial quantities such as the
usually supposed thét; is large enough so that the unit cell macroscopic velocity* and the reactivityy,. Both will vary
can contain many “independent” samples of the porous meduring deposition and the actual Damkoéhler number will in-
dium. If this condition is not satisfied, the discrete modelcrease.
fails to represent the random character of a real medium. The macroscopic parameters for the various Da are com-
Thus, it is likely that an improper choice of the cell size canpared to the illustrative case in Fig. 7. The curves for Da
cause significant errors in the estimation of the macroscopie 8 x 1072 collapse onto the curves of the illustrative case
parameters of the random medium. The ratid.. was used where Da=8<10°° [Fig. 7(a)]. On the contrary, for Da=8
to characterize the cell size. In the illustrative casH,. is  and 80, the behavior of the mean porosity differs consider-
equal to 8/30. Two more calculations were done Xdt..  ably from the illustrative case. The mean porosity curve is
equal to 8/20 and 8/40. not exponential anymore. At the beginning of deposition, the

For all cases, the mean porosity vaks is equal to 0.2 mean porosity diminishes more slowly than for the illustra-
and the standard deviatian,=0.2. For all calculations, we tive case and after a certain time it decreases sharply. Clog-
kept the ration/a constant and equal to 8 as for the illustra- ging occurs earlier than for the illustrative case. For Da
tive case. In order to change the rakdL. the size of the =0.8, the mean porosity values match well the results for the
unit cell was varied. The mean porosity value and the totalllustrative case except for the times close to clogging. Clog-
amount of deposit were shown not to be influenced\bly,.  ging occurs a bit later than for the illustrative case.
On the contrary, the macroscopic permeability is a bit sensi- The mean porosity evolution can be approximated by a
tive to the variations ok /L. especially for small Damkohler polynomial of degree 3 in all casé¢$able I). The evolution
numbers. Note that correct results are only obtained for sufef the total amount of deposit per unit volume is proportional
ficiently large unit cells, but the computational time increasedo the mean porosity chang@qe, is shown as a function of
significantly with the increase of the domain size. The pretime in Fig. 1b). Finally, at clogging, the total amount of
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FIG. 10. Evolution of a porous medium with an initial lognormal porosity distribution. Each line corresponds to a different time. The left
row is the probability densitg(In ) of In(e(r’,t")); the central one is a cross section of the porosity field parallel to the pressure gradient;
the right one is perpendicular to the pressure gradient. Da=80. The porosity convention is given by the vertical bars.
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] - —— t=0 | ability density g(lne) is less spread than for small
. —— ¥=0.3470 Damkohler numbers. There are no regions with high poros-
o8- ' —o— t'=0.5522 | ity. Thus, the situations where Bal can be considered as
AN —— 1'=0.8057 (clogging) intermediate between the regime where convection is domi-
nant Da<1l and the regime where reaction is dominant
0.67
Da>1.
3 0.4l It is necessary to add that the clogging timfig has no
o particular importance since clogging has been somewhat ar-
ozl bitrarily defined. Hence, attention should be focused on the
: evolution of the macroscopic parameters with time.
ok In the following, each calculation will be done for a small
and a large Damkdéhler number, since the system is expected
02 ; ‘ ‘ , to behave differently in these conditions. More precisely, we
“0 0.2 0.4 0.6 0.8 mean the evolution of the probability densgyin ) and the
(@) u relation between the macroscopic permeability and the mean
: : : : porosity. As for the mean porosity evolution, it will be shown
1 L —=— =0 | later that the exponential decrease for small Damkohler num-
—— 1'=0.3470 bers only occurs for lognormally distributed porosity fields.
08I\ X : | —e— t=0.5522 I Polynomial approximations of the mean porosity values pro-
—— t'=0.8057 (clogging) vide a very good fit for all the results described in this work.
061 _ , , : ) Note that they are only valid for time$ e [0,T.]. The data
= \ ' are gathered in Table I.
=]
;—' 041 C. Influence of the parameters characterizing the initial
0.2 porosity distribution
' This section studies the influence of the me&ag and of
ok the standard deviationy of the initial porosity field on the
, evolution of the macroscopic parameters during deposition.
_0.2 . . ; ‘ The initial porosity field is assumed to be lognormally dis-
v) 0 0.2 0.4 ! 0.6 0.8 tributed. The ratio\/L, is equal to 8/30.

The first test addresses the effect of the mean porosity

FIG. 11. Evolution of the correlation functior®(u) (@ and ~ Value.(gg) is taken to be equal to 0.4 ang=0.2. The sec-

R, (u) (b). The dimensionless lengthis normalized by the half- ©ond and third calculations are done f&#;)=0.2 and oy
size of the unit cell. Da=80. equal to 0.1 and 0.3. The calculations were performed for
Da=8x10"° (Fig. 14 and Da=8. The calculated mean po-
deposit per unit volume is nearly the same for all cases. Theosity values are compared to the analytical solution derived
macroscopic permeability as a function of the dimensionles&r a homogeneous medium. As it can be seen, for situations
time is shown in Fig. ), the results for Da=& 10%, 8  where the ratiary/(sq) is small, the mean porosity is close to
X 1072, 0.8 and 8 are close to each other; only Da=80 differ¢he analytical solution for a homogeneous medium. Note that
considerably from the others. Thus, it is remarkable that théhe mean porosity decreases faster for the homogeneous me-
macroscopic permeabilities for Da=8 and Da=80 collapsalium than for the heterogeneous ones. The clogging time
onto a single curve as a function of the mean porosity. For alincreases withog/(go). Moreover, it is obvious now that the
casesK is a power of(e) with an exponentr;=3.55 for  exponential decrease of the mean porosity value takes place
small Damkoéhler numbera=8x 10 and 8<10%) and only for heterogeneous systems withy/(e) sufficiently
nn=4.22 for high Damkoéhler numbef®a=8 and 8 large.

Thus, two different regimes are observed for small and The amount of deposit necessary to clog the medium is
large Damkohler numbers. The evolution of the porosity fieldhigher for smallero,, but the variations are not significant.
for high Da can be observed in Fig. 8 for Da=8 and in Fig.The initial porosity value strongly affectye, [Fig. 14b)].

9 for Da=80. Contrarily to small Da, a large proportion of The higher the initial mean porosity, the larger the deposit
matter is deposited in the regions where porosity is highamount necessary to clog the medium.

This modifies the correlations displayed in Fig. 10 for Da The macroscopic permeability as a function of the mean
=8 and in Fig. 11 for Da=80. At clogging, the porosity field porosity does not depend on the average statistical properties
is nearly uniform. of the initial field. The results collapse onto a single curve for

The case where Da=0.8 is different from the rest of theboth Damkohler numbei$ig. 14(d)]. The macroscopic per-
results. At the beginning of deposition, the evolution of themeability evolutions are different, because of different mean
porosity field is analogous to the illustrative case where Da iporosity values.
small. The porosity field sections and the probability densi- _ _ _ S
ties are displayed in Fig. 12. The evolution of the correlation D- Uniform, Gaussian, and self-affine porosity distributions
functions is shown in Fig. 13. At clogging, the porosity field  The random porosity field is characterized by the porosity
is not uniform as for large Damkdhler numbers, but the probprobability density and the spatial organization of the porous
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FIG. 12. Evolution of a porous medium with an initial lognormal porosity distribution. Each line corresponds to a different time. The left
row is the probability densitg(In ) of In(e(r’,t")); the central one is a cross section of the porosity field parallel to the pressure gradient;
the right one is perpendicular to the pressure gradient. Da=0.8. The porosity convention is given by the vertical bars.
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0.8 .| —— t=0.53%6 i FIG. 14. Influence of the mean initial porosity and of its stan-

t'=1.2972 (clogging) dard deviation on the macroscopic properties. Data are for

: : <80>:O.4 and O'OZO.KO), <80>:O.2, 0'020.1(*), <80>:0.2,
00=0.3¢), illustrative casdé[]). The solid line represents a least-
square data fit. The elementary soluti¢h6) is shown by the
dashed-dotted lines. The dashed line corresponds to the analytical
solution for a homogeneous medium witkr0.2. \/L.=8/30. Da
=8x107°,

rosity and low porosity are clearly distinguishable. The
: : : : aspect of the lognormal porosity field is similar to the Gauss-
-0.25 02 04 06 08 ian one, but the variations are more pronounced, i.e., the
(b) u porosity is either very small or very high. The self-affine
porosity field displays a more complex spatial structure since
FIG. 13. Evolution of the correlation functiorR(u) (a) and both sharp and smooth changes occur around a single el-
R, (u) (b). The dimensionless length is normalized by the half- ementary cube.
size of the unit cell. Da=0.8. The macroscopic parameters derived for these initial
fields are shown in Figs. 15 and 16. As expected, the case of
material; this latter aspect can be described by correlatiothe uniformly distributed porosity field is distinct from the
functions such a$3.18). Four different porosity fields were others. For both Damkohler numbers, the mean porosity
used in this study, namely Gaussian, lognormal, self-affineyalue decreases faster than for the other cases. For small
and uniform. The detailed description is given in Sec. Il B.Damkéhler numbers, results for Gaussian and self-affine
Gaussian and lognormal fields are characterized by the sanfields collapse onto a single curve. For large Damkohler
Gaussian correlation function; they are useful to study théumbers, they are close to each other, yet different. Remark-
influence of the porosity variability on the output results. Onably, the exponential decrease of the mean porosity for small
the other hand, Gaussian and self-affine fields have the sanRRamkohler numbers is only valid for the lognormal distribu-
Gaussian distribution of the porosity values, but their spatiafion. For the other distributions, the variations can be ap-
organization is very different due to different correlation Proximated by a polynomial of degree 3. The least-square

functions. By comparing these two cases, one can estimaféOprr(])Ximatlior_' coefffiﬁients are given indTabIedI. hon th
the influence of the spatial correlation on the results. The evolution of the mean porosity depends much on the

All the correlated fields are generated with)=0.2 and spatial correlation of the porosity field as well as on the
0p=0.2. For the self-affine distributiof] was taken equal to vgriability of the porosity values.' At the l_)eginning of depo-
2. The uniform distribution corresponds to porosities uni-Ston: the total amount of deposit per unit volume as a func-

formly distributed over the intervdD,0.4]. The uniform dis- gf:)n O|];1 thﬁésrgseu?{;yf;?ihzamenfgrrmaa|1|| thoerocsai‘ts ezélgk()j?f?e:o
tribution is distinct from the others since it is not correlated ' °99'N9: 9 P y

from the others with less deposited matter.

and sinceoy is determined by the interval of variations; here  For all Damkdhler numbers, the macroscopic permeabili-

03~0.115. ties are of the form5.5. For small Da, the curves of the
The porosity fields are shown in Fig. 1 and their aspectsnacroscopic permeability as a function of the mean porosity

are seen to be very different. In the uniformly distributedare very close to each other for all cases. They are slightly

porous medium, porosity changes abruptly because of its urdifferent only for times close to clogging.

correlated character. The Gaussian porosity field is character- For large Da, the relationship between the macroscopic

ized by smooth porosity changes, and regions with high popermeability and the mean porosity depends on the spatial
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elementa_ry solutiof.g) is shown by the_ dashed-_dotted lines. The elementary solutioit4.6) is shown by the dashed-dotted lines. The
dashed line corresponds to the analytical solution for a homog

e : . .
dashed line corresponds to the analytical solution for a homoge-
i ith = = = 6

neous medium witle=0.2.\/L.=8/30. Da=8x 10°°. neous medium witls=0.2.\/L,=8/30. Da=8.

organization pf the porous medium. For Gau55|an_ and Iog't'he porous medium properties depending on the Damkdhler
normal porosity fields, the curves of the macroscopic permes mner which compares the effects of reaction and convec-
ability as a function of the mean porosity are very close t%ion. When convection is dominafiba< 1), the porous me-

each other. Note that these porosity fields have the sal . - .

: : ; um properties change smoothly. At clogging, the porosity
Gaussian cprrela’uon functio3.18. On 'the other.han.d, the field is analogous to the initial one. The regions where po-
corresponding results for the self-affine porosity field are

. P _rosity is high, still exist. When reaction is dominatiba
;/_elré/ close to those for the uniformly distributed porosity >1)ythe pc?rous medium is nearly uniform at clogging. For
ield. ' :

Damkohler numbers close to 1, the evolution of the porous
medium is similar to the case Bal at the beginning of
deposition, and similar to the case Ba for the times close

Deposition in statistically homogeneous media and thd© clogging.
subsequent clogging have been studied. A numerical code The heterogeneity of the medium was observed to have a
has been developed which simulates the fluid flow, the transstrong influence on the evolution of the mean parameters.
port of a reactive solute in heterogeneous porous media akhe evolution of the mean porosity value depends on the
well as the alterations of the macroscopic properties of thét&tiStiC&' characteristics of the initial pOfOSity field while the
porous medium due to the deposition of the solute onto th&acroscopic permeability as a function of the mean porosity
pore walls. The code has been tested on several situatioM¢as found to depend mostly on the spatial organization of
where the analytical solution is known and a good agreemerthe porous material.
was usually observed. Statistically homogeneous media were This study is a first step towards the understanding of
approximated by spatially periodic media. Since these moddeposition phenomena on the macroscopic scale. It would be
els are discrete, it is always necessary to validate the choidgteresting to extend this work to other cases, particularly to
of several unphysica| parameters such as the size of the urﬂpnun'iform local deposition and different constitutive rela-
cell or the space discretization step, etc., applied in the simutionships.
lations. Appropriate tests have been performed. The results
have shown that the parameter set was choser) correctly. ACKNOWLEDGMENTS
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